A. Lisser, V. Singh, O. Jouini

We consider a two player bimatrix game where the entries of each player’s payoff matrix are independent random variables following a certain distribution. We formulate this as a chance-constrained game by considering that the payoff of each player is defined by using a chance-constraint. We consider the case of normal and Cauchy distributions. We show that a Nash equilibrium of the chance-constrained game corresponding to normal distribution can be obtained by solving an equivalent nonlinear complementarity problem. Further if the entries of the payoff matrices are also identically distributed with non-negative mean, we show that a strategy pair, where each player’s strategy is the uniform distribution on his action set, is a Nash equilibrium of the chance-constrained game. We show that a Nash equilibrium of the chance-constrained game corresponding to Cauchy distribution can be obtained by solving an equivalent linear complementarity problem.

Keywords: Chance-Constrained Game, Nash Equilibrium, Normal Distribution, Cauchy Distribution, Nonlinear Complementarity Problem, Linear Complementarity Problem.

Scheduled

WE2 Game Theory and equilibrium models
June 1, 2016  4:30 PM
Sala de pinturas


Other papers in the same session


Latest news

  • 1/8/16
    Paper submission is open
  • 1/8/16
    Registration is open

Sponsors

Cookie policy

We use cookies in order to be able to identify and authenticate you on the website. They are necessary for the correct functioning of it, and therefore they can not be disabled. If you continue browsing the website, you are agreeing with their acceptance, as well as our Privacy Policy.

Additionally, we use Google Analytics in order to analyze the website traffic. They also use cookies and you can accept or refuse them with the buttons below.

You can read more details about our Cookie Policy and our Privacy Policy.